

CALCULATION OF THE FLOW-RATE MEASUREMENT UNCERTAINTY BY MEANS OF PITOT TUBES USING THE MONTE CARLO METHOD

<u>Luís Lages Martins</u> (LNEC – National Laboratory for Civil Engineering) Álvaro Silva Ribeiro (LNEC – National Laboratory for Civil Engineering) João Alves e Sousa (IPQ – Portuguese Institute for Quality)

FLOMEKO2019

International Flow Measurement Conference

Portugal | Lisbon | LNEC | 26-28 june 2019

Summary

- Introduction
- Velocity and flow-rate measurements by means of Pitot tubes
- Measurement uncertainty evaluation
 - Input probabilistic formulation and uncertainty propagation stages
 - Monte Carlo Method
- Results
 - Air density
 - Compressibility correction factor
 - Local velocity
 - Volumetric and mass flow-rate
- Conclusions

Introduction

• Measurement of fluid flow in closed conduits

- Point velocity methods
 - Hot-wire and hot-film anemometers
 - Vane anemometers
 - Current meters
 - Laser velocimetry
 - <u>Pitot tubes</u>
- Normative framework: ISO 3966:2008
 - Design and maintenance
 - Calculation procedures
 - Annex G Example of estimation of the uncertainty
 - Conventional error approach
- Motivation: review and update the procedure used to evaluate the measurement accuracy in flow-rate measurements using Pitot tubes

2008 VIM and GUM Supplement 1 editions

Calculation of the flow-rate measurement uncertainty by means of Pitot tubes using the Monte Carlo Method FLOMEKO 2019, PORTUGAL | LISBON | LNEC | 26-28 JUNE 2019

Introduction

- Application of the Monte Carlo Method
 - Non-linearity and complexity of the applied mathematical models
 - Based on the input information shown in ISO 3966 Annex G
 - Robust comparison with the results obtained using the conventional error approach
 - The quantified flow-rate measurement accuracy is merely illustrative: in a real case scenario, the presented probabilistic formulation and quantification must be confirmed and updated if required

Calculation of the flow-rate measurement uncertainty by means of Pitot tubes using the Monte Carlo Method FLOMEKO 2019, PORTUGAL | LISBON | LNEC | 26-28 JUNE 2019

Velocity and flow-rate measurements by means of Pitot tubes

- Bernoulli's principle
 - Local fluid velocity, v

$$v = \alpha \cdot \sqrt{\frac{2 \cdot \Delta p}{\rho}}$$

- Calibration factor, α
- Differential pressure, Δp
- Compressible fluid density, ho

$$\rho = \frac{p \cdot M}{Z \cdot R_{\mathsf{g}} \cdot T}$$

- Local static pressure, p
- Molar mass of the fluid, M
- Molar constant of gas, Rg
- Gas law deviation, Z
- Local static temperature, T

■ For air velocities above 60 m·s⁻¹

$$v = \alpha \cdot (1 - \varepsilon) \cdot \sqrt{\frac{2 \cdot \Delta p}{\rho}}$$

• Compressibility correction factor, $(1 - \varepsilon)$

$$(1-\varepsilon) \approx \left[1 - \frac{1}{2 \cdot \gamma} \cdot \frac{\Delta p}{p} + \frac{\gamma - 1}{6 \cdot \gamma^2} \left(\frac{\Delta p}{p}\right)^2\right]^{\frac{1}{2}}$$

 Ratio of specific heat capacities, γ, (varies between 1,1 and 1,7) • Volumetric flow-rate

 $q_V = U \cdot A$

- Discharge velocity, U
 - Graphical integration
 - Numerical integration
 - Arithmetical methods

$$U = \frac{1}{\pi \cdot R^2} \int_0^{2\pi} \int_0^R v(r,\theta) \cdot r \cdot dr \cdot d\theta$$
$$U = \int_0^1 \int_0^1 v \cdot d\left(\frac{h}{H}\right) \cdot d\left(\frac{l}{L}\right)$$

- Cross-section, A
- Mass flow-rate

SO 3966:2008

$$q_m = q_V \cdot \rho$$

Measurement uncertainty evaluation

- Input probabilistic formulation and uncertainty propagation stages
- Uncertainty Standard Uncertainty propagation stages **Uncertainty source** PDF component uncertaintv Fluid density 100 Pa u(p)Local static pressure Gaussian Molar mass of the fluid 2.3.10⁻⁶ ka·mol⁻¹ u(M)Gaussian Local velocity Uniform 0.000 5/√3 u(Z)Gas deviation factor Volumetric flow-rate $u(R_{\mathsf{q}})$ 4.8.10-6 J.mol-1.K-1 Molar constant of gas Gaussian Local static Mass flow-rate Gaussian 0.1 K u(T)temperature Instrumental $u(\Delta p)_{inst}$ Gaussian 0.4% Estimates related to input quantities uncertainty Correction for head loss Gaussian 0.2% $u(\Delta p)_{head}$ 105 000 Pa 1.40 28 963,5 ·10⁻⁶ kg·mol⁻¹ 10.00 Pa Calibration factor of the Δp Gaussian 0.2% $u(\alpha)$ 1,000 00 73 0.00 Pa Pitot tube 8.314 459 8 J·mol⁻¹·K⁻¹ 1.000 Ratio of specific heat α 0.3/√3 Uniform $u(\gamma)$ capacities 0.120 0 m² 0.2% u(A)Cross-section area Gaussian * Correction of the measured differential pressure related to the head loss.

Uncertainty components related to input quantities

290.0 K

11.

IV.

 \mathcal{D} М

Ζ

Rq

T

Calculation of the flow-rate measurement uncertainty by means of Pitot tubes using the Monte Carlo Method FLOMEKO 2019, PORTUGAL | LISBON | LNEC | 26-28 JUNE 2019

Measurement uncertainty evaluation

• Input probabilistic formulation and uncertainty propoagation stages

Additional uncertainty components related to the local velocity measurement

Uncertainty component	Uncertainty source	PDF	Standard uncertainty
$u(v)_{block}$	Blockage effect	Gaussian	0,25%
$u(v)_{high}$	Turbulence and high frequency fluctuations	Gaussian	0,50%
$u(v)_{incl}$	Pitot tube inclination	Gaussian	0,15%
$u(v)_{\text{grad}}$	Gradient velocity	Gaussian	0,15%
$u(v)_{slow}$	Slow fluctuations	Gaussian	0,10%

Additional uncertainty components related to the volumetric flow-rate measurement

Uncertainty component	Uncertainty source	PDF	Standard uncertainty
$u(q_V)_{integ}$	Integration technique	Gaussian	0,10%
$u(q_V)_{rough}$	Roughness coefficient estimate	Gaussian	0,05%
$u(q_V)_{\text{point}}$	Insufficient number of points	Gaussian	0,10%
$u(q_V)_{posit}$	Pitot tube positioning	Gaussian	0,05%

Calculation of the flow-rate measurement uncertainty by means of Pitot tubes using the Monte Carlo Method FLOMEKO 2019, PORTUGAL | LISBON | LNEC | 26-28 JUNE 2019

Measurement uncertainty evaluation

- Monte Carlo Method (MCM)
 - Computational simulation algorithm developed in Matlab[®]
 - Supplement 1 of the GUM
 - Mersenne-Twister pseudo-random number generator
 - Validated computational routines
 - Average
 - Mode
 - 95% expanded measurement uncertainties (absolute and relative)
 - Computational accuracy
 - Normalized histograms of the simulated output PDFs
 - Number of trials for convergent solutions: 10⁶

- Air density
 - Main contributions for the obtained uncertainty
 - Local static pressure (89%)
 - Local temperature (8%)
 - Molar constant of gas (3%)
 - Molar mass and gas deviation factor (negligible)
 - Local static pressure (800 mbar 1200 mbar)
 - Air densities from (0,960 0 ± 0,004 9) kg·m⁻³ up to (1,440 6 ± 0,005 2) kg·m⁻³
 - Local temperature (273 K 373 K)
 - Constant air density 95% expanded uncertainty: 0,4%

Mean	Mode	<i>U</i> _{95%}	U _{r 95%}	<i>U</i> _{c 95%}
/ kg·m⁻	³ / kg·m ⁻³	∕ kg·m ⁻³	/%	/ kg⋅m⁻³
1,260 4	1,260 5	0,005 1	0,4	< 0,000 03

- Compressibility correction factor
 - Main contributions for the obtained uncertainty
 - Ratio of specific heat capacities (99,7%)
 - Differential pressure (0,15%)
 - Local static pressure (0,15%)
 - Asymmetrical output PDF
 - Related to the ratio of specific heat capacities (a Gaussian shape PDF is obtained when considering this uncertainty component null)

Mean	Mode	U _{95%}	U _{c 95%}
0,999 982 7	0,999 985 7	3,6·10 ⁻⁶	< 7·10 ⁻⁹

Calculation of the flow-rate measurement uncertainty by means of Pitot tubes using the Monte Carlo Method FLOMEKO 2019, PORTUGAL | LISBON | LNEC | 26-28 JUNE 2019

• Local velocity

- Studied measurement interval: 4 m·s⁻¹ up to 90 m·s⁻¹
- Constant relative 95% expanded uncertainty: 1,7%

Mean	Mode	<i>U</i> _{95%}	U _{r 95%}	<i>U</i> _{c 95%}
/ m·s⁻¹	/ m·s ⁻¹	/ m⋅s⁻¹	/%	/ m⋅s⁻¹
3,983	3,978	0,069	1,7	< 0,000 4

Calculation of the flow-rate measurement uncertainty by means of Pitot tubes using the Monte Carlo Method FLOMEKO 2019, PORTUGAL | LISBON | LNEC | 26-28 JUNE 2019

Volumetric flow-rate

- Main contributions for the obtained uncertainty
 - Local velocity (91%)
 - Cross-section area (4%)
 - Uncertainty components
 - Integration technique (1,5%)
 - Pitot tube positioning (1,5%)
 - Number of measurement points (1,5%)
 - Estimation of roughness coefficient (0,5%)
- Studied measurement interval: 0,15 m³·s⁻¹ (544 m³·h⁻¹) up to 1,5 m³·s⁻¹ (5440 m³·h⁻¹)
- Constant relative 95% expanded uncertainty: 1,8%

Mean	Mode	<i>U</i> _{95%}	U _{r 95%}	<i>U</i> _{c 95%}
/ m ³ ·s ⁻¹	/ m ³ ·s ⁻¹	/ m³⋅s⁻¹	/ %	/ m³⋅s⁻¹
0,478 0	0,477 9	0,008 7	1,8	< 0,000 05
Mean	Mode	<i>U</i> _{95%}	U _{r 95%}	<i>U</i> _{c 95%}
/ m ^{3.} h ⁻¹	/ m ^{3.} h ⁻¹	/ m ^{3.} h ⁻¹	/%	/ m³⋅h⁻¹
1721	1720	31	1,8	< 0,18

Calculation of the flow-rate measurement uncertainty by means of Pitot tubes using the Monte Carlo Method FLOMEKO 2019, PORTUGAL | LISBON | LNEC | 26-28 JUNE 2019

• Mass flow-rate

- Main contributions for the obtained uncertainty
 - Volumetric flow-rate (99%)
 - Fluid density (1%)
- Studied measurement interval: 0,2 kg·s⁻¹ (720 kg·h⁻¹) up to 2,0 kg·s⁻¹ (7200 kg·h⁻¹)
- Constant relative 95% expanded uncertainty: 1,8%

Mean / kg⋅s⁻¹	Mode / kg⋅s⁻¹	<i>U</i> _{95%} / kg⋅s⁻¹	U _{r 95%} /%	<i>U</i> _{c 95%} / kg·s⁻¹
0,602	0,603	0,011	1,8	< 0,000 06
Mean	Mode	U _{95%}	U _{r 95%}	U _{c 95%}
/ kg·h ⁻¹	/ kg·h ⁻¹	/ kg·h ⁻¹	/ %	/ kg⋅h⁻¹
2167	2170	40	1,8	< 0,22

Calculation of the flow-rate measurement uncertainty by means of Pitot tubes using the Monte Carlo Method FLOMEKO 2019, PORTUGAL | LISBON | LNEC | 26-28 JUNE 2019

Conclusions

- Monte Carlo Method fit-for-purpose
- 95% expanded relative measurement uncertainties
 - 1,7% local velocity (1,4% in ISO 3966:2008)
 - 1,8% volumetric and mass flow-rates (1,5% in ISO 3966:2008)
- Weak non-linearity of the applied mathematical models
- Low contribution of measurement uncertainty of quantities such as the compressibility correction factor
- Major contributions for the flow-rate measurement accuracy
 - Pitot tube calibration factor
 - Uncertainty component related to turbulence and high frequency fluctuations
- Future revision of ISO 3966:2008 standard Annex G

Portugal | Lisbon | LNEC | 26-28 june 2019

Thank you for your attention!

Luís Martins | Ifmartins@Inec.pt

Calculation of the flow-rate measurement uncertainty by means of Pitot tubes using the Monte Carlo Method FLOMEKO 2019, PORTUGAL | LISBON | LNEC | 26-28 JUNE 2019